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Abstract

The paper describes a new, robust method for the exponential analysis problem solving. In discrete case the regu-

larizing operators of the inverse Laplace transformation are used for transformation of experimental data into a form

that is more suitable for determination of decay rates and amplitudes. In the case of a continuous distribution a spectral

function is obtained by regularized inverse Laplace transformation of the transient. The proposed method has ad-

vantages over known methods and is tolerant to the baseline offset. The results of numerical testing show that the

proposed method can be used in high-resolution analysis for determination of spectral functions, decay rates and

amplitudes from experimentally measured transients.
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1. Introduction

The problem of exponential analysis arises in semiconductor physics, nuclear physics, nuclear magnetic

resonance, chemistry and electrochemistry, biophysics and many other fields [10]. The problem is aimed at

determining a continuous spectral function f ðkÞ (continuous case) from experimentally measured decaying
function of time F ðtÞ:

F ðtÞ ¼ Bþ
Z 1

0

e�ktf ðkÞ dk; ð1Þ

where B is a constant (the baseline offset).
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In the case where the spectral function f ðkÞ can be represented as a sum of delta functions (discrete case),

Eq. (1) reduces to the following:

F ðtÞ ¼ Bþ
XN
i¼1

Ai expð�kitÞ: ð2Þ

In this last case the problem of exponential analysis is in determining the total number of decays N , their

rates ki and amplitudes Ai. It is important to note that there is a fundamental resolution limit for expo-

nential analysis, determined by signal-to-noise ratio (SNR) in the input data [2].

It has been known for a long time that the problem of exponential analysis may, in principle, be solved

with the help of inverse Laplace transformation [8]. Indeed, formally applying inverse Laplace transfor-

mation 1 to Eqs. (1) and (2) we will have:

L�1½F ðtÞ� ¼ Bdð0Þ þ f ðkÞ; ð3Þ
L�1½F ðtÞ� ¼ Bdð0Þ þ
XN
i¼1

Aidðk� kiÞ; ð4Þ

where dðk� kiÞ is a delta function.

However, despite this theoretical possibility of solving the problem of exponential analysis with the help

of inverse Laplace transformation, in practice the most widely used methods exploit other approaches [10],

for example, Prony�s method [16]. The reason for this is the function F ðtÞ being obtained from experiment

contains noise and known only for real t > 0, whereas the inverse Laplace transformation is given in the
form of Bromwich contour integral. Therefore, only a method for inverting of real-valued Laplace

transforms can be applied to this problem solving.

The problem of inverting of real-valued Laplace transforms is well known to be ill-posed [20], and one

should use regularization in order to obtain a stable solution. Implementation of a non-regularizing Gavel–

Stehfest algorithm [18] with double precision of input data allows to resolve two exponentials if k2=k1 ’ 1:5
[17]. This resolution is far away from the resolution limit of exponential analysis [2] when data uncertainty

is limited only by rounding errors of double precision arithmetic.

Tikhonov regularization method [20] is used to solve the problem of exponential analysis in the discrete
case and is implemented in several computer programs (see review [10] for further references). However, in

the continuous case, implementation of Tikhonov theory for inverting real-valued Laplace transforms

turned out to be unsuccessful due to some numerical difficulties [21].

A number of other known methods for inverting of real-valued Laplace transforms (see for example [4–

7,9]) apply regularization to a second-order problem obtained by discretization or expansion of a Laplace

transform or its original function into a series. The method�s validity is usually confirmed by testing on a set

of somewhat simple Laplace transforms. To the best of author�s knowledge, no implementation of the

above cited methods to the problem of exponential analysis is described in literature.
A robust method for inversion of real-valued Laplace transforms has been proposed and generalized by

the author in [13–15]. The analytical background of the method allows us to determine limitations of in-

version of real-valued Laplace transforms and to provide theoretical error analysis. The testing results

clearly show substantial advantages of the proposed method over known methods in stability and accuracy

[15].
1 In this paper denotations that are standard for exponential analysis (not for Laplace transformation) are used: Laplace transform

and its inverse transform are denoted as F ðtÞ and f ðkÞ, respectively.
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This paper deals with application of built regularizing operators of the inverse Laplace transformation to

the problem of exponential analysis. Theoretical background and selection of parameters of regularizing

operators are given in the next section. Then, the results of numerical testing are provided. Finally, features
and limitations of the exponential analysis are briefly discussed.
2. Outline of the method

Let F ðtÞ, f ðkÞ denote a Laplace transform pair. As shown in [15] a regularized inverse Laplace transform

fRðkÞ can be calculated from the following integral of convolution type:

fRðkÞ ¼
Z 1

0

F ðuÞPðR; kuÞ du; ð5Þ

where R is a conjugate parameter of regularization.

The regularized solution fRðkÞ tends to the exact one f ðkÞ as R ! 1. The kernel of regularized inverse

Laplace transformation PðR; xÞ is not unique. Multiple kernels can be constructed by selecting an arbitrary

continuous function uðpÞ;uð1Þ 6¼ 0 in the following definition [15]:

PðR; xÞ ¼ 1

puð1ÞL
�1 sinðR ln pÞ

p � 1
uðpÞ

� �
;

where L�1 is operator of inverse Laplace transformation, p is complex variable.

In case where uðpÞ ¼ pa=ðp þ 1Þ, the kernel PðR; xÞ is given by formula [14]

PðR; xÞ ¼ �2

p2
� Im sinpða

�
þ iRÞCða� 1þ iRÞx1�a�iR

1F2 1;
2� a� iR

2
;
3� a� iR

2
;
x2

4

� ��
; ð6Þ

where a < 2 is a real parameter,

1F2 1;
2� a� iR

2
;
3� a� iR

2
;
x2

4

� �

is generalized hypergeometric function, and Cða� 1þ iRÞ is gamma function.

It is also shown in [14] that regularized inverse Laplace transform fRðkÞ is connected to the exact one

f ðkÞ as

fRðkÞ ¼
2

p

Z 1

0

f ðkuÞua sinðR ln uÞ
u2 � 1

du; ð7Þ

and fRðkÞ ! f ðkÞ as R ! 1 if the last integral converges. Also Laplace transforms F ðtÞ and

FRðtÞ ¼ L½fRðk� are connected as follows:

FRðtÞ ¼
2

p

Z 1

0

F ðtuÞ u1�a

u2 � 1
sinðR ln uÞ du: ð8Þ

Eqs. (5) and (6) define a regularizing operator for inverting a given Laplace transform whenever there is a

valid value of parameter a for which integral (5) converges [14]. Using formulae given above, we can find a

continuous spectral function by calculating integral (5). The accuracy of obtained solution depends on
accuracy of input data. It tends to be higher for monotonic functions [13,14].

To analyze problem in the discrete case, consider the following Laplace transform pair:

L½dðk� k0Þ� ¼ expð�k0tÞ: ð9Þ
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For F ðtÞ ¼ expð�k0tÞ; k0 > 0 integral (8) converges for any a < 2. Substituting expð�k0tÞ into Eq. (8), we

can find the regularized Laplace transform of expð�k0tÞ

L½dRðk� k0Þ� ¼
2

p

Z 1

0

e�k0tu
u1�a

u2 � 1
sinðR ln uÞ du: ð10Þ

It is apparent from (10) that

L½dRðk� k0Þ� ¼
2

p
L

k1�a sinðR ln kÞ
k2 � 1

; k0t
� �

: ð11Þ

Then, in accordance with properties of Laplace transformation we have

dRðk� k0Þ ¼
1

pk0

sinR ln k
k0

sinh ln k
k0

k
k0

� ��a

: ð12Þ

Fig. 1 shows the function dRðk� 1Þ obtained by calculating integral (5) for F ðtÞ ¼ expð�tÞ, R ¼ 3, and

a ¼ 0. Graph in Fig. 1 coincides with theoretical function defined by Eq. (12). It is worth mentioning that

for a ¼ 0 (the value is used in calculations throughout this paper) the function dRðk� k0Þ is symmetric in

semilogarithmic coordinates, and its main maximum is at k ¼ k0. In simple cases this feature allows us to

distinguish monoexponential and multiexponential cases by analyzing graph�s symmetry.

Zeroes of dRðk� k0Þ depend only on values of R and k0. The value of k0 can be calculated using simple
formulae that involve zeroes� abscissas (kleft; krightÞ that surround the main maximum: k0 ¼ kleft expðp=RÞ
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Fig. 1. Function dRðk� 1Þ obtained from Laplace transform F ðtÞ ¼ expð�tÞ.
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and k0 ¼ kright expð�p=RÞ. Theoretically in monoexponential case the obtained values of k0 are the same. In

multiexponential case the calculated values are different, which allow us to conclude that more than one

exponential decay is present.
In the case of double-exponential decays, a transient and its regularized inverse Laplace transform will

be F ðtÞ ¼ A1 expð�k1tÞ þ A2 expð�k2tÞ, fRðkÞ ¼ A1dRðk� k1Þ þ A2dRðk� k2Þ, respectively. Then, we can

determine decay rates ki and amplitudes Ai by nonlinear least squares fitting of fRðkÞ with a sum of

functions dRðk� kiÞ using the values ki calculated from graph�s zeroes as an initial approximation.

If yðkÞ denote the values of the regularized inverse Laplace transform of the transient that were calculatedN
times at the points kðkÞ, then the parameters in question can be found by minimizing the following function:

gðk1; k2Þ ¼
XN
k¼1

yðkÞ
h

� A1ðk1; k2ÞdRðkðkÞ � k1Þ � A2ðk1; k2ÞdRðkðkÞ � k2Þ
i2
; ð13Þ

where amplitudes A1;A2 are obtained by least-squares method for any fixed values k1; k2.
Note, that analytical background of the proposed method [13–15], unlike all other methods for regu-

larized inversion of real-valued Laplace transforms [4–7,9], is crucial for definition of minimization problem

(13). In examples below decay rates and amplitudes are obtained by minimizing gðk1; k2Þ with the help of

Matlab�s function Fminunc.
3. Numerical implementation

For performing calculations using above given formulae we need to find an appropriate value of pa-

rameter R. Although the use of optimal value of parameter R results in better accuracy, it is not critical for

the method being considered.
In the discrete case, variation in R mainly results in change of functions dRðk� kiÞ. In the continuous

case, the optimal value of parameter R is close to a linear function of a number n of correct digits in input

data [15], and it lies, approximately, in the interval n=2 < Ropt < n. All calculations given in the next section

were performed with R ¼ 10 in the case of noise-free transients (double precision of input data), and R � n
in the case of noisy transients.

In order to obtain a regularized inverse Laplace transform of the transient one needs to compute integral

(5). Adaptive quadrature procedures tend to be very effective in practice [12]. An adaptive quadrature

algorithm that takes into consideration function�s PðR; xÞ features [14] has been developed for computing
integral (5). The effective use of the adaptive quadrature assumes that integrand is smooth and can be

obtained at any t > 0. On the contrary, only noisy values of F ðtÞ for predefined set of points for t < T (T is

the data acquisition time) are known from experiment.

This problem can be resolved by finding a curve that fits experimental data. Since a transient

F ðtÞ ! const: as t ! 1, the same should be true for approximation function. Such an approximation

can be found using different approaches. For examples given in this paper, a transient has been

transformed into a more suitable form using substitutions x ¼ expð�btÞ (discrete case) and x ¼ b=ðt þ bÞ
(continuous case). In both cases the parameter b has been selected so that function F ðxÞ becomes
slightly concave. Fig. 2 shows a transient F ðtÞ and function F ðxÞ that is more suitable for

approximation.

Then, least-square approximation to the function�s F ðxÞ noisy data by a spline with a few degrees of

freedom can be found. This step was performed with the help of Matlab�s spline toolbox by selecting

knots at ½0; 0:2; 0:4; 0:6; 0:8; 1�. After approximation function FapprðtÞ is found, we can calculate integral

(5) using ~F ðtÞ ¼ FapprðtÞ � Fapprð1Þ. Obviously that function ~F ðtÞ is not affected by baseline offset

presence.
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The values of noisy transient were simulated by: FexpðtiÞ ¼ F ðtiÞ þ hei, where �16 ei 6 1 are uniformly

distributed random numbers. Value of parameter h has been selected in accordance with SNR:

h ¼ ðF ð0Þ � BÞ/SNR.
4. Double-exponential analysis

4.1. Noise-free transient

First, consider numerical examples by simulating double-exponential decays with double precision of

input data and equal amplitudes:

F ðtÞ ¼ expð�tÞ þ expð�k2tÞ: ð14Þ

Graphs of the regularized inverse Laplace transforms of the transient (14) for k2=k1 ¼ 1:6 and k2=k1 ¼ 1:3
are given in Fig. 3. As seen from the graphs, in the case where k2=k1 ¼ 1:6 the regularized inverse Laplace
transform has two central maxima, and graph becomes more symmetrical for k2=k1 ¼ 1:3 . In both cases,

dissymmetry of graphs clearly indicates the presence of more than one exponential decay.

When k2=k1 ¼ 1:6 , we can find decay rates initial approximation by determining abscissas of the main

maxima from the graph: k01 � 1; k02 � 1:73. Then, finding the minimum of function (13), we will get final

results: k1 ’ 0:99999998, A1 ’ 1:0000037, k2 ’ 1:59999998, A2 ’ 1:0000025. The errors in determining

transient�s parameters are of order 10�8 for decay rates, and of order 10�6 for decay amplitudes.
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When k2=k1 ¼ 1:3, initial approximation of the decay rates can be obtained by analyzing function�s
zeroes (kleft; kright) that surround the main maximum. Let us assume that one of them is close to a corre-

sponding zero of dRðk� k1Þ, and another one is close to a zero of dRðk� k2Þ. With this assumption the

initial approximation of the decay rates becomes: k01 � 1:02; k02 � 1:1. Then, the search for the minimum of
function (13) gives: k1 ’ 1:0000016, A1 ’ 1:0000118, k2 ’ 1:30000289, A2 ’ 0:9999923.

In case where k2=k1 6 1:3 the graph of regularized inverse Laplace transform becomes more symmetric

(see Fig. 4). However, two exponential decays still can be resolved. When k2=k1 ¼ 1:1 we have the following

initial approximation: k01 � 1:038, k02 � 1:059, and final result: k1 ’ 1:000006, A1 ’ 1:000137, k2 ’
1:1000082, A2 ’ 0:999865.

As it can be seen, the obtained results are better than the ones that are known from literature. Indeed, from

review [10] it appears that two exponential decays can be resolved from noise-free transient if k2=k1 P 1:5.
It is interesting to find a resolution limit of the considered approach. If k1 ¼ 1, k2 ¼ 1:05, the initial

approximation is: k01 � 1:016, k02 � 1:032. The final results are still satisfactory: k1 ’ 0:99987, A1 ’ 0:99458,
k2 ’ 1:04985, A2 ’ 1:0054.

In the case where k1 ¼ 1, k2 ¼ 1:02 we have the following initial approximation: k01 � 1:0022,
k02 � 1:0236; and final results are: k1 ’ 1:00247, A1 ’ 1:2817, k2 ’ 1:02345, A2 ’ 0:7183. In this last case the

relative error in determination of decay amplitudes, approximately is 30%.

Thus, the ratio k2=k1 ¼ 1:02 can be approximately taken as the resolution limit of the presented method

in the case of double precision of input data. It is interesting to mention that obtained resolution limit is less

than 1.15, which referred to in [2] as theoretical resolution limit in case of double precision of input data
and infinite domain.



10
−2

10
−1

10
0

10
1

10
2

−2

0

2

4

6

λ

λ
2
/λ

1
=1.1

10
−2

10
−1

10
0

10
1

10
2

−2

0

2

4

6

λ

λ
2
/λ

1
=1.05

Fig. 4. Regularized inverse Laplace transform of F ðtÞ ¼ expð�tÞ þ expð�k2tÞ, k2 ¼ 1:1 and k2 ¼ 1:05, R ¼ 10.

V.V. Kryzhniy / Journal of Computational Physics 199 (2004) 618–630 625
4.2. Noisy transient

Consider the following simulation of experimental data:

F ðtÞ ¼ 1

4
expð�0:6tÞ þ 1

4
expð�k2tÞ þ Bþ hei; ð15Þ

where �16 ei 6 1 are uniformly distributed random numbers.

As first example consider the case where B ¼ 3, h ¼ 0:005, k2 ¼ 1:8, that is k2=k1 ¼ 3 and

SNR ¼ ðF ð0Þ � BÞ=h ¼ 100. This case has been reported as a resolution reached with the help of Tikhonov

regularization method [19] and some other methods without presence of the baseline offset. The presence of
the baseline offset usually results in a higher sensitivity to noise and lower resolution [10]. For the baseline

insensitive correlation method, two exponential components can be resolved if k2=k1 ¼ 3:4 and SNR > 900

[11].

Let us simulate noisy values F ðtiÞ, 16 i6N in N ¼ 1000 points equidistantly placed on an interval

06 t6 20 and find least-square approximation to the noisy data. Using statistical reasoning we may assume

that the approximating function represents the transient with error e � 0:001. Therefore, we can calculate

regularized inverse Laplace transform using values R � 3. The results are given in the left-hand side of

Table 1. As can be seen from Table 1, the obtained values for decay rates and amplitudes are stable and
quite satisfactory.

The right-hand side of Table 1 shows results obtained for the same transient, in case where the noise level

is 3 times greater (h ¼ 0:015, SNR � 30) and the number of simulated data points within the same time



Table 2

Parameter restoration of the transient F ðtÞ ¼ 1
4
expð�0:6tÞ þ 1

4
expð�1:2tÞ þ 2

k2=k1 ¼ 2, SNR¼ 100, N ¼ 1000 k2=k1 ¼ 2, SNR¼ 100, N ¼ 10000

R k1 A1 k2 A2 R k1 A1 k2 A2

2.0 0.5326 0.1634 1.0399 0.3314 3.0 0.5892 0.2299 1.1419 0.2651

2.5 0.5307 0.1600 1.0314 0.3336 3.5 0.6009 0.2420 1.1610 0.2515

3.0 0.5330 0.1612 1.0308 0.3316 4.0 0.6208 0.2638 1.2104 0.2295

Table 1

Parameter restoration of the transient F ðtÞ ¼ 1
4
expð�0:6tÞ þ 1

4
expð�1:8tÞ þ 3

k2=k1 ¼ 3, SNR¼ 100, N ¼ 1000 k2=k1 ¼ 3, SNR¼ 30, N ¼ 10,000

R k1 A1 k2 A2 R k1 A1 k2 A2

2.0 0.5857 0.2393 1.7497 0.2599 2.5 0.5999 0.2431 1.7213 0.2515

2.5 0.5906 0.2434 1.7809 0.2573 3.0 0.6036 0.2475 1.7349 0.2437

3.0 0.5972 0.2488 1.8325 0.2559 3.5 0.6135 0.2523 1.7585 0.2345

3.5 0.6054 0.2549 1.9107 0.2586 4.0 0.6265 0.2576 1.8038 0.2215
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frame is increased to N ¼ 10,000. As it could be seen from Table 1 the restored values of decay rates and

amplitudes are as accurate as in first example for SNR¼ 100 and N ¼ 1000.

Next, consider the transient (15) with parameters k2 ¼ 1:2, B ¼ 2, h ¼ 5� 10�3, that is k2=k1 ¼ 2 and
SNR ¼ 100. The results for N ¼ 1000 are shown in the left-hand side of Table 2. As seen from the table, in

this case the error of output results increased substantially in comparison with first example. Nevertheless,

the ratio is k2=k1 � 2. It is under the resolution limit [2] for given SNR¼ 100. From this observation one

can conclude that parameters are estimated poorly. We can try to improve results with the help of in-

creasing the number of simulated data points by 10 times within the same time frame. The results indicated

on the right-hand side of Table 2 show significant improvement of the output.

Thus, the method being considered has advantages over other known methods. The possibility to use

approximating function offers opportunity to improve SNR and solve the problem by measuring more
data, whereas for other known methods ‘‘the increasing number of data points results in an increase of

computational time without any improvement in resolution’’ [10, p.1240].
5. Continuous spectral function

As it was mentioned above a continuous spectral function f ðkÞ can be found with some degree of ac-

curacy by calculating integral (5). In case of continuous spectral function, a transient usually tends to a
constant much slower, which results in significant increasing of the time frame in which data is acquired.

Following [3], consider restoration of a gamma distribution, but with baseline offset presence:

F ðtÞ ¼ 1:0þ 256=ð4þ tÞ4 þ hei; f ðkÞ ¼ 128k3 expð�4kÞ=3: ð16Þ

First, let us simulate N ¼ 20,000 noisy data points within the interval 06 t6 98 with h ¼ 0:005. Again, we

may assume that approximating function represents F ðtÞ with error of order 10�4. Therefore, we can safely
use R ’ 4 while calculating integral (5). The results of calculations are shown in Fig. 5 (dotted line). As it is

seen from the graph, the obtained function f ðkÞ is negative for t > 2:8, which contradicts with the meaning

of spectral function. From this observation we can conclude that spectral function was estimated roughly.
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In order to obtain more accurate results let us find approximation using N ¼ 100,000 data points. The

results are shown in Fig. 5 (dash line). In this case the function f ðkÞ is positive, so we may assume that

obtained results are satisfactory. Graph in Fig. 5 shows also results obtained for R ¼ 15 and double pre-

cision of input data.

Thus, with the help of the proposed method it is possible to find a spectral function from noisy data. It is

worth mentioning that in the proposed method no assumptions about type of distribution were made,

which is an advantage over methods that fit f ðkÞ with predefined set of functions [1].

Note that features of the proposed method can be studied analytically in the case of gamma distribution
[13–15]. Let us demonstrate those features considering spectral function with two maxima:

F ðtÞ ¼ expð�
ffiffiffiffiffiffiffiffi
0:5t

p
Þ þ 256=ð4þ tÞ4;

f ðkÞ ¼ 1ffiffiffi
p

p
ð2kÞ3=2

expð�1=8kÞ þ 128k3 expð�4kÞ=3:
ð17Þ

The results of restoration, obtained for R ¼ 15, R ¼ 6 and R ¼ 5, are shown in Fig. 6. As can be seen from

Fig. 6, graphs obtained with R ¼ 5 and R ¼ 6 are practically coincident with each other, and f ðkÞ > 0 as it

should be. Having this in mind one can conclude that spectral function has been found with acceptable

accuracy.

On the other hand, consider another spectral function with two maxima in similar places:

F ðtÞ ¼ 0:5

ð1þ t=32Þ6
þ 0:5

ð1þ 3t=64Þ12
;

f ðkÞ ¼ 326

5!2
k5 expð�32kÞ þ ð64=3Þ12

11!2
k11 expð�64k=3Þ:

ð18Þ
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The results of restoration are shown in Fig. 7. As seen from Fig. 7, obtained spectral function is negative for
some k > 1, which indicates that the value of parameter R is lower, than it is necessary for accurate results.

Comparing graphs obtained for R ¼ 6 and R ¼ 5, it is easy to see that functions differ the most in areas of

extrema. Observing the trend of graphs� changes, one can assume that spectral function in question has

sharper peaks.

The last two examples illustrate features of the proposed method discussed in [13] that are intuitively

clear: for the same accuracy of input data the lesser errors are seen for more monotonic and smooth

functions. Redrawing graph 7 in coordinates ðk; f ðkÞÞ (see Fig. 8), one can observe that for the same input

accuracy the sharper peaks can be more accurately restored for smaller k values than for larger ones.
6. Conclusion

Summing the discussion above we can state that regularized numerical inversion of real-valued Laplace

transforms can be successfully used for exponential analysis problem solving in discrete and continuous

cases.

An acceptable value for conjugate regularization parameter R can be found by estimating input data
inaccuracy. The results obtained using R � n (n is a number of correct digits in input data) are stable and

nearly as accurate as possible for given SNR.

The method is tolerant to the baseline offset and allows to resolve two exponential decays with ratio

k2=k1 close to theoretical resolution limit for given SNR.

The application of a spline least-square approximation to the noisy data allows to improve SNR and

output results by increasing the number of input data points. An acceptable approximating function can be

found with the help of standard tools, although some additional research may be required, especially in the
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continuous case. It is worth to emphasize that usage of more accurate approximation is beneficial for the

presented method. Nevertheless, usage of any reasonable approximation does not affect its vital capacity.
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